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Propagation of solitons in hydrogen-bonded chains with mass variation

G. Kalosakas, A. V. Zolotaryuk,* G. P. Tsironis, and E. N. Economou
Physics Department, University of Crete and Research Center of Crete/FORTH, P.O. Box 2208, 71003 Heraklion, Crete, Gr
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In the context of the soliton mechanism for proton transport in hydrogen-bonded networks we analyze
properties of kink propagation through disordered hydrogen-bonded chain when realistic mass variation along
the chain is created through deuterium substitutions. We provide an interpretation for the kink propagation in
the chain as the motion of a particle with variable mass. We show that mass impurity localized modes are
excited only above a certain threshold of kink velocity and, as a result, the presence of mass impurities
renormalizes the maximal kink velocity in the medium. The existence of a critical kink velocity for the
excitation of impurity mode appears also in the study of the interaction of kink with a single impurity.
@S1063-651X~97!02207-1#

PACS number~s!: 42.65.Tg, 63.20.Ry, 63.20.Pw
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I. INTRODUCTION

The basic idea in the soliton model of proton transp
along a hydrogen-bonded chain~HB! stems from the fact
that the proton in each H bond of the chain can be found
two equilibrium positions separated by a potential barrier.
a result, two degenerate HB ground states can be form
viz. ••• XuH •••XuH •••XuH ••• and ••• HuX•••
HuX••• HuX••• @1#, while the transitions between thes
two states in the displacive limit result in topological solito
@2–4#. When we consider only the ionic defect motion, t
on-site potential of the HB proton can be constructed as
sum of two pair of ion-proton potentials, e.g., the Mor
potentials@5#. In the study of the more general problem
ionic and orientational defects we can use appropriate do
periodic functions that are known to simulate well the effe
tive proton potential@6–9#.

A progressively realistic study, in the context of solito
models, of proton motion in HB chains, has to address
effects in proton soliton~kink! motion of the presence o
impurities in the system. Even though there exists work
the scattering properties of solitons, mainly from a sin
impurity @10–14#, as well as rich literature on the nontop
logical soliton propagation in disordered media@15–20#,
there is no detailed knowledge regarding the more reali
situation of proton kink propagation inlong disordered
chains. This situation, that arises in HB chains doped w
deuteriumatoms, is currently addressed experimentally@21#.
In order to analyze phenomena that are generated experi
tally in the context of isotopic substitution and to investiga
the proton-kink dynamics in the context of similarly pr
duced disordered chains, we consider an HB chain wit
binary mass variation. The massmn at given siten takes the
valuesmn 5 mp or mn 5 2mp depending on whethe
that site is occupied by a proton with massmp or a deuteron
of mass 2mp , respectively.

The paper is organized as follows: In the Sec. II w
present the soliton-bearing model with the inclusion of m
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disorder. The properties of soliton propagation in a lo
mass-disordered segment are described in Sec. III. In
Sec. IV we develop a collective coordinate approach wh
allows us to interpret the numerical results of Sec. III. Co
cluding remarks are in Sec. V.

II. THE MASS-DISORDERED KINK-BEARING MODEL

The Hamiltonian for the complete chain can be written
the form

H5(
n

F12S pn
2

mn
D 1

1

2
k~un112un!

21«0V~un / l !G , ~1!

where un is the displacement of thenth proton from the
barrier top of the on-site potential«0V which is assumed to
have, at least, two degenerate minima, compatible wit
standard kink-bearing model@3,4#, «0 is the height of the
barrier between the minima of the on-site potenti
pn5mndun /dt is thenth proton momentum,k is the stiff-
ness constant of intersite proton-proton interaction, andl is
the lattice spacing of the chain. The bistable~or multistable!
function V(q) is renormalized according to
V(q1)5V(q2)50 andV(0)51, whereq1 and q2 are the
positions of the two minima around the originq50. It is
convenient to use a dimensionless form of the Hamilton
~1! and the corresponding equations of motion; this is
complished by introducing the dimensionless tim
t5(k/mp)

1/2 t, wheremp is the proton mass. Then the s
of coupled equations of motion takes the form

mnq̈n5qn1122qn1qn212e0V8~qn!, n50,61, . . . ,
~2!

where the lattice displacement fieldqn is given in units of the
lattice spacingl , i.e.,qn(t)5un(t)/ l . Heremn5mn /mp de-
scribes the relative mass variation along the chain
e05«0/k l

2 is the dimensionless potential barrier heigh
From here onwards the dot denotes the differentiation w
respect to the dimensionless timet and the prime will stand
for spatial or other types of differentiation.
1088 © 1997 The American Physical Society
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56 1089PROPAGATION OF SOLITONS IN HYDROGEN-BONDED . . .
In the continuum limit (x5n), the lattice fieldqn(t) and
the mass distributionmn are substituted byq(x,t) and
m(x), respectively. The dimensionless Lagrangian~in units
of k l 2) has the form

L5E dxF12m~x!qt
22

1

2
qx
22e0V~q!G . ~3!

The corresponding equations of motion~2! take the form of
the partial-differential equation

m~x!qtt2qxx1e0V8~q!50, ~4!

which admits the standing soliton~kink and antikink! solu-
tion q5qK(x) given by the equations

qK8 ~x!56A2e0V@qK~x!# or x56E
0

qK dq

A2e0V~q!
,

~5!

where the upper~lower! sign corresponds to a kink~anti-
kink!. As follows from these equations, thestandingkink
profile qK(x) does not depend on the mass variationm(x).

In the particular case where there is no mass variat
i.e.,m(x)51, the time-dependent Eq.~4! has the ‘‘relativis-
tically’’ covariant form and, therefore, the stationary solito
profile for the moving kink~and antikink! with the dimen-
sionless speeds5v/c0, wherec05Ak/mp l is the charac-
teristic velocity of proton sound, can be constructed from
static profileqK(x) by the substitution of the argumentx by
j5(x2st)/A12s2. In the general case with mass variatio
we assume thesamedependence of the soliton profile on th
position of its centerX5X(t) and the velocityẊ5Ẋ(t), i.e.,
we substitute:st→X(t) ands→Ẋ(t), so that

qK~x,t!5qK~j!, j5j~x,t!5
x2X~t!

A12Ẋ2~t!
, ~6!

may be considered as an approximate~see, e.g., Ref.@22#!
soliton solution of Eq.~4! given in terms of the collective
coordinateX(t).

III. KINK PROPAGATION IN A MASS-DISORDERED
SEGMENT

Using the ansatz given by Eqs.~6!, for sufficiently small
soliton velocities (s2!1) we can approximately write

q.qK~x2X!, qt.2ẊqK8 ~x2X!, qx.qK8 ~x2X!.
~7!

Substituting Eqs.~7! into the Lagrangian~3!, we find for
small velocities

L5L~Ẋ,X!5 1
2MẊ22E0 , ~8!

where

M5M „X~t!…5E F2
„x2X~t!…m~x!dx ~9!

is the effective soliton mass and
n,

e

,

E05M05E F2~x!dx5E
q1

q2A2e0V~q!dq ~10!

is the rest soliton energy which in the dimensionless unit
the same as the rest effective massM0. Here the function
F has a bell-shaped form; it is defined through a solit
solution by

F~x!5uqK8 ~x!u. ~11!

For simplicity of notations, we assume throughout th
paper that the on-site potentialV(q) is a symmetric function.
Therefore,qK8(2x)5qK8(x). The form of the Lagrangian
~8! allows us to interpret the motion of a topological solito
~kink or antikink! in a mass-disordered kink-bearing chain
the motion of aneffective particle with varying mass. The
total energy of the effective particle, whom its dynamics
described by the Lagrangian~8!, is an integral of motion, i.e.,

E5E01
1
2M ~t!Ẋ25const, ~12!

where the varying massM (t) is given by Eq.~9!.
Next, we assume that the disordered chain segmen

embedded in a regular chain withm[mp and consider an
incoming kink with an initial velocitysi5v i /c0 from the
regular part of the chain. Then its initial energy in the no
relativistic limit isM0si

2/2 and, as a result, from Eq.~12! we
find the time dependence of the velocity

Ẋ~t!5S M0

M01dM ~t! D
1/2

si ,

dM ~t!5E F2
„x2X~t!…dm~x!dx, ~13!

where we have represented the mass distributionm(x) as the
sum m(x)511dm(x) with the continuum mass variatio
dm(x). The sign of the kink acceleration at each instant
time t depends on the sign ofdM (t) at this moment. Here
dM (t) can be considered as an increase or decrease o
effective rest massM0. In the particular case when deuter
ums are present in the chain, we have a positive stoch
cally varying~in time! kink mass. A kink entering the disor
dered segment with a small initial velocitysi and while
propagating in it experiences a random reduction of its
locity. The equation of motion~13! predicts that upon exiting
the segment, the final kink velocitysf is the same as the
initial velocity si . In order to test this prediction, we pe
formed extensive numerical simulations in the particular c
of the double-Morse potential@5#

V~q!5Fa2cosh~bq!

a21 G2, ~14!

where the parametera5cosh(bq0) determines the potentia
minimaq56q0 (q152q0 andq25q0). The explicit stand-
ing soliton solution is given by

tanh
bqK
2

56S a21

a11D
1/2

tanh
x

d
, ~15!

with the soliton width
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1090 56KALOSAKAS, ZOLOTARYUK, TSIRONIS, AND ECONOMOU
d5
1

bS 2~a21!

e0~a11! D
1/2

@1. ~16!

The upper~lower! sign in Eq.~15! corresponds to the kink
~antikink! solution. In the limiting case, when the parame
b→0, the double-well potential~14! becomes the wel
known f4 potential @2#: V(q)5(12q2/q0

2)2. The function
F(X) of Eq. ~11! corresponding to the potential~14! is

F~X!5
A2e0~a11!

a2112 cosh2~X/d!
. ~17!

The calculation of the rest soliton mass according to Eq.~10!
yields

M05
4

b2dS abq0

Aa221
21D . ~18!

For the numerical solution of the Eqs.~2! we used the
fourth-order Runge-Kutta method; for accuracy we mo
tored the total energy that was conserved to one par
1027. The simulations have shown that for sufficiently sm
initial incoming velocitiessi ’s, smaller than a certain critica
valuescr , indeed, noimpurity modes~see Sec. IV! are ex-
cited resulting in the predicted behavior, viz.sf5si @Fig.
1~a!#. Furthermore, random kink velocity fluctuations appe
exactly as predicted by Eq.~13!. As a result, the numerica
simulations corroborate the picture furnished by Eq.~13! for
kink propagation in a long mass-disordered medium in
velocity rangesi,scr .

The kink propagation picture in the fully disordered cha
changes drastically for incoming kink velocities larger th
the critical velocityscr . In this regime, the impurity mode
are excited at the expense of the kink kinetic energy and
a result, there is now areductionin the exiting kink velocity
sf leading to the inequalitysf,si . This situation is illus-
trated in Fig. 1~b!. To see if this picture appears also wh
lighter impuritiesare present in the disordered segment,
performed numerical simulations with impurity mass
smaller thanmp , i.e., ‘‘attractive impurities.’’ We found that
at large velocities kinks excite the impurities, loose ener
and depart with a smaller velocity. At small injection veloc
ties, the exit kink velocity is again the same as the init
velocity; there is a similar yetreversedsmall velocity fluc-
tuating pattern compared to that in Fig. 1~a!, where the ve-
locity fluctuations are now above the kink injection velocit
This is exactly the behavior predicted by Eq.~13!. In order to
treat the large velocity cases in the context of the collec
coordinate formalism, we must introduce additional fun
tions describing the amplitude of the impurity modes. T
resulting dynamical system, even for the single impur
case, is quite complicated and will be studied in the Sec.

We carried out numerical simulations for the calculati
of the critical velocityscr and its dependence from the leng
of disordered segment. In Fig. 2~a! we show the results of a
kink injected in a disordered chain consisting of 1000 un
by plotting the exiting kink velocity as a function of th
incoming velocity. We observe equality at small velociti
r

-
in
l

r

e

as

e

,

l

e
-
e

.

,

and departure from it after some critical valuescr . In Fig.
2~b! we investigate the dependence of the critical veloc
scr , operationally defined as the point of departure from
equalitysi5sf in Fig. 2~a!, as a function of disordered lengt
segment. We see that as the segment length increases,
is a clear saturation to a segment length independent va
approximately equal toscr'0.2 ~in units of sound velocity!.
As a result of our finding that for incoming kink velocitie
si ’s larger than some critical velocityscr kink energy losses
commence, we expect that propagation in long disorde
mesoscopic chains with many impurities will exhibit an e
fective maximal propagation velocity determined byscr .
When a kink moves initially faster than this maximal velo

FIG. 1. Kink propagation in ordered and disordered media.
all the simulations we used for the on-site potential, that is giv
from Eqs. ~1! and ~14!, values of the parametersb57, q050.35
ande050.005. The sound velocity in the perfect chain is unity.~a!
Kink propagation with small initial velocitysi50.05 for an ordered
~dotted line! and a disordered~continuous line! HB chain consisting
of 100 units with deuterium substitution pc equal to 20%. We o
serve here, as well as in simulations with much longer chains,
the kink exits with the same velocity even though its velocity h
been fluctuating while in the disordered chain.~b! Similarly for
large initial velocity si50.6 and disordered segment of 200 un
cells. All quantities are dimensionless.
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56 1091PROPAGATION OF SOLITONS IN HYDROGEN-BONDED . . .
ity, it excites impurity modes and by loosing energy, reduc
its velocity until the maximal allowed velocity is reached
the latter is independent of the length of the disordered s
ment for very large lengths. In order to confirm this idea w
performed additional numerical calculations for quite lon
disordered segments, shown in Fig. 3. Here, we injected
kink at a fixed initial velocitysi much larger thanscr , and
register the exit velocitysf for disordered segments of vari-
ous lengths. We observe that the exit velocity drops ve
quickly as the segment size increases and subsequently
proaches very slowly the asymptotic valuescr'0.2. We note
also that Scr increases as the impurity concentration
creases.

FIG. 2. ~a! Exiting kink velocity as a function of incoming ve-
locity for a disordered segment of 1000 units consisting of 20
mass impurity substitution. The error bars are error estimates ta
from statistics with the chain configurations. We observe that t
equality between incoming and exiting kink velocities starts depa
ing at some critical velocityscr . ~b! Critical velocity at which a
measurable departure occurs from the equalitysf5si as a function
of disordered segment size. The deuterium content is at 20%.
s

g-

a

y
ap-

e-

IV. SINGLE-IMPURITY MODE AND ITS INTERACTION
WITH A KINK: COLLECTIVE COORDINATE

APPROACH

When the density of deuterium atoms is low the averag
distance between adjacent impurities is larger than the so
ton width. In this limit the scattering of a soliton by many
impurities can approximately be treated independently, ig
noring interference effects. Therefore, in order to understa
the appearance of the soliton velocity threshold for value
higher than that for which the soliton transparency through
mass-disordered segment is accompanied by energy loss
we consider an isolated impurity localized at a single sit
~e.g., at the site withn50). We represent the relative mass
variation along the chain as the sum

mn511hdn,0 , ~19!

whereh is the difference of the impurity mass anddm,n is
the Kronecker symbol.

The impurity mode is the standing linear localized wave

qn~t!5A0exp~2unu/l!cos~Vt! ~20!

with an arbitrary amplitudeA0. The two dimensionless quan-
tities: correlation lengthl and frequencyV can be found
explicitly @11# by substituting the ansatz~20! into the set of
the linearized equations~2!. Note that the similar procedure
can be accomplished in the continuum limit@12–14#. The
result is

cosh
1

l
511~V0

22V2!/2, ~21!

whereV05Ae0V9(6q0) is the dimensionless frequency of
small-amplitude oscillations at each of the minimaq56q0

en
e
t-

FIG. 3. Velocity of a kink exiting a disordered segment with
20% mass impurity substitution as a function of length size. Th
exiting velocity approaches slowly the limiting valuescr'0.2 at
large disordered segment sizes. The initial velocity is 0.6. The err
bars are error estimates taken from statistics with the chain config
rations.
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1092 56KALOSAKAS, ZOLOTARYUK, TSIRONIS, AND ECONOMOU
and the impurity mode frequencyV, depending on the im-
purity massh, is given explicitly by~for h.0!

V25
V0

2122A~V0
214!V0

2h214

12h2 . ~22!

When h→0 ~the ‘̀amplitude’’ impurity vanishes!, then
V→V0 andl→`, i.e., the impurity mode is delocalized.

We can study the interaction of a moving kink~or anti-
kink! with the impurity mode in the continuum limi
(n5x) by using the collective coordinate approach. Acco
ing to Eq. ~20!, we assume a general solution to be in t
form of the linear superposition

q~x,t!5qK„x2X~t!…6A~t!exp~2uxu/l! ~23!

where the upper~lower! sign coincides with that of the kink
~antikink! solution given implicitly by Eqs.~5! and ~6! @see,
also, Eq.~15!#. The functionA5A(t) describes the small
amplitude background for the kink~antikink!. Note that in
the case of absence of the interaction with the kink, we h
A(t)5A0cos(Vt) @see Eq.~20!#. Both the variablesX(t)
andA(t) are to be determined whereas the parameterl is
defined according to Eqs.~21! and ~22!.

After a series of calculations presented in the Appen
we arrive at the equations of motion for both the generali
coordinatesX(t) andA(t)

@M01hF2~X!#Ẍ2hF3~X!G~X!Ẋ22@ I ~X!1hF~X!#Ä

1J8~X!A2/250,

~l1h!~Ä1V2A!2@ I ~X!1hF~X!#Ẍ

2@ I 8~X!2hF2~X!G~X!#Ẋ21J~X!A50,
~24!

where the functionG is defined byG(x)52F8(x)/F2(x)
while the functionsI andJ and the derivativesI 8 andJ8 are
given in the Appendix.

The set of Eqs.~24! describes the interaction of the effe
tive particle, the position of which is given by the coordina
X(t), with the oscillatorA(t) situated at the originx50.
This interaction is completely determined by the shape of
potential functionF(X), i.e., by the profile of the soliton
solutionqK8 (x) @see Eq.~11!#. The other functionG(x) and
the convolutionsI (X) and J(X) are given in terms of the
potential F(x). In the limiting caseh→0 (V→V0 and
l→`), when I (X)→I 05 const andJ(X)→J05 const, the
equations of motion~24! are reduced to

M0Ẍ2I 0Ä50, Ä1V0
2A50. ~25!

These equations describe the interaction of the soliton w
the infinitely extended harmonic wave of the frequencyV0.
Their integration yields the soliton motion consisting of tw
parts: uniform~depending on the initial conditions! and os-
cillating ~with the frequencyV0).

The results of integration of the effective equations~24!
in the framework of the collective coordinate approximati
~CCA! and their comparison with those of the direct simu
tions of the basic equations of motion~2! with one deuterium
-

e

x
d

e

th

-

impurity, are presented in Figs. 4 and 5. It follows from the
figures that the results of the CCA are in good corresp
dence with the direct simulation results. Thus, both pictu
~direct and collective coordinate! illustrate that no impurity
modes are excited and, as a result,sf5si if initial velocities
are sufficiently small. It was fascinating to observe that d
ing the kink passage in the vicinity of the impurity, the o
cillator coordinate~the displacement of the deuterium fro
its equilibrium position! A(t) displaces forward and back
wards accomplishing in time approximately just one oscil
tion period, as shown in Fig. 5. The amplitude of this on
period oscillation increases with the growth of initi
velocity. For higher incoming velocities nonvanishing~re-
sidual! impurity oscillations appear. The amplitude of the
oscillations is much smaller than the displacement pu
~one-period oscillation! appearing and existing during th
kink-impurity interaction. As the initial velocitysi increases
the amplitude of the residual oscillations becomes larger.
ter the kink-impurity interaction terminates, the oscillatio
amplitude is stabilized to some constant value. In ot
words, above the critical velocity, there is some energy l
of the incoming soliton resulting in decreasing its veloci
Therefore, the residual oscillations can be referred to as
impurity mode. Since these results, at least at the qualita
level, coincide with those of the direct simulations of Eq
~2!, one can conclude that the collective coordinate appro
mation adequately describes the scattering picture of a s
ton by a mass impurity.

In Fig. 6 we plot the energy of the impurity mode, a lon
time after the passage of the kink from the impurity site, a
function of the initial kink velocity. For the case of the dire
simulation of the equations of motion~2! we calculate the
impurity mode energy using Hamiltonian~1!, where the sum
extends to a segment of 2l sites to the left to 2l sites to the
right of the impurity site@see Fig. 6~a!#. For the case of CCA
we plot the energy of oscillator given by the expressi
(l1h)(Ȧ21V2A2)/2 @see Fig. 6~b!#. These figures demon
strate a behavior similar of that depicted in Fig. 2~a!, i.e., for
small initial kink velocities we havesf5si and for larger
ones we havesf,si . However, in the CCA scheme@Fig.
6~b!# we see that some form of ‘‘modulation’’ takes plac
there are two abrupt drops beginning atsi.0.4 and
si.0.6, that are not expected and, more importantly,
confirmed by the direct simulation picture given in Fig. 6~a!.
This discrepancy can be explained by the fact that we h
adopted the particle-oscillator approximation, assuming E
~7! valid only for sufficiently small velocities. The resultin
particle-oscillator system described by the equations of m
tion ~24! appears to be a crude approximation to the ma
oscillator system governed by Eqs.~2!. A simplified system
of equations, such as Eqs.~24!, with only two degrees of
freedom, has some nonlinear resonance properties which
exhibited by the modulated behavior. In order to impro
this approximation the collective coordinate scheme app
in this paper would have to be developed in a more prec
way by taking into account the relativistic behavior, a
instead of Eqs.~7! taking exact derivatives ofq5qK(j), viz.
qt52gẊ(12gẌj)qK8 (j), qx5gqK8 (j) wherej[g~x2X)

andg5(12Ẋ2)21/2. However, the resulting effective equa
tions of motion become very complicated and their analy
is much more difficult.
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FIG. 4. Propagating kink velocity~ordinate! as a function of time~abscissa! for kinks with different initial velocitiessi . When the kink
interacts with a deuterium impurity its velocity drops. The thick lines show the results of the collective coordinate approximation whi
lines show the direct simulations of the equations of motion~2!.
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V. SUMMARY

We have examined the propagation of proton solito
~kinks and antikinks! in isotopically random chains an
found that, contrary to intuition, impurity modes are not e
cited for low ~compared toscr) incoming velocity of the
soliton ~at least such an excitation was not detected wit
the accuracy of our numerical simulation!. In contrast, at
relatively high velocities the soliton loses part of its ener
and slows down. Since in the absence of mass variation
soliton propagates perfectly at these velocities, we concl
that its loss of energy is directly attributed to the excitati
of the impurity modes in a mass-disordered segment of
chain. Since the same exit velocity reduction is not obser
at low velocities, it is evident that the impurity modes are n
excited then. These effects of theabsence of excitation of th
s

-

n

he
e

e
d
t

impurity modesat small velocities and their appearance a
certain critical incoming velocity are clearly depicted in Fi
2~a! where we plot the kink velocity after exiting the diso
dered segment as a function of the incoming velocity in
1000 site long disordered segment. This also appears in
scattering of a kink by a single impurity, where the impuri
mode is not excited for sufficiently small initial kink veloc
ties. The existence of an upper critical propagation soli
velocity scr in the mass-disordered medium that is low
than the speed of sound in the perfect lattice signifies that
effective proton motion is much slower when deuterium i
purities are present in an HB chain. This phenomenon of
effective renormalization of the maximal propagation ki
velocity in the presence of disorder could be used exp
mentally for the assessment of the nonlinear aspects of
proton dynamics.
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FIG. 5. Deuterium impurity displacement from the minimum of the on-site potential as a function of time, for different initia
velocitiessi . The deviation from the zero value is a result of the passage of the kink through the impurity. The thick lines show the
of the collective coordinate approximation while the thin lines show the direct simulations of the equations of motion~2!.
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APPENDIX

Upon substitution of the ansatz~23! as well as the con-
tinuum form of Eq. ~19!, viz. m(x)511hd(x), where
d(x) is the Diracd function, into the Lagrangian~3! and
using Eqs.~7!, ~9!–~11!, andF(2x)5F(x), in the nonrela-
tivistic limit we find the effective Lagrangian~up to a con-
stant!
.
lly
.
p-

L~X,Ẋ;A,Ȧ!. 1
2 ~M01hF2!Ẋ22~ I1hF !ẊȦ

1 1
2 ~l1h!~Ȧ22V2A2!2 1

2JA
2, ~A1!

where

I ~X!5E F~x2X!exp~2uxu/l!dx, ~A2!

J~X!5E $e0V9@qK~x2X!#2V0
2%exp~22uxu/l!dx.

~A3!

In the calculations of the Lagrangian~A1!, we have ex-
panded the functionV(q) in the vicinity of the soliton solu-
tion qK(x2X) up to the second order and then we used
relation (l1h)V25l211lV0

2 which follows from Eqs.



es

di-

ve

-
lt

la-

ns

56 1095PROPAGATION OF SOLITONS IN HYDROGEN-BONDED . . .
~21! and~22!. In the limit A(t)→0 the effective Lagrangian
~A1! is reduced to the form~8!, so that Eq.~13! can be
rewritten as

Ẋ5
si

6A11~h/M0!F
2~X!

~A4!

if we substitute theredm(x)5hd(x). We have inserted the
sign ‘‘6’’ in Eq. ~A4! because when the mass impurityh is

FIG. 6. Energy of the impurity mode long time after the passag
of the kink from the impurity site as a function of the initial kink
velocity. In ~a! we present results from the direct simulation of the
equations of motion~2! and in ~b! results in the framework of the
collective coordinate approximation.
-

very large~compared to deuterium! and the initial kink ve-
locity larger than a threshold value, the kink reflection tak
place@23#.

From the Lagrangian~A1! result the equations of motion
~24! for the generalized coordinatesX(t) andA(t), that de-
scribe the system in the framework of the collective coor
nate approximation. Using the expressionG(x)5
2F8(x)/F2(x) we have

I 8~X!5E F2~x2X!G~x2X!exp~2uxu/l!dx, ~A5!

J~X!5E $F~x2X!@2F~x2X!G2~x2X!

2G8~x2X!#2V0
2%exp~22uxu/l!dx, ~A6!

J8~X!5E F~x2X!@4F2~x2X!G3~x2X!25F~x2X!

3G~x2X!G8~x2X!1G9~x2X!#

3exp~22uxu/l!dx. ~A7!

The system of coupled equations~24! can be transformed
in a form convenient for numerical integration and sol
them using the boundary conditionsX(2`)52`,
Ẋ(2`)5si , A(2`)50, Ȧ(2`)50 . We choose the po
tential of Eq.~14! for our numerical simulations; as a resu
the functionF(X) is given by Eq.~17!, while theG(X) is

G~X!5
b

Aa221
sinh~2X/d!. ~A8!

The calculation of the frequency of small-amplitude oscil
tions yieldsV05Ae0V9(6q0)52/d . For the numerical so-
lution of the Eqs.~24!, besides Eqs.~16!, ~17!, ~18!, ~A2! and
~A5!, we used the following specific form for the expressio
~A6! and ~A7!, viz:

J~X!52
b2

a11E F2~x2X!S 6a

a21
cosh2

x2X

d
1a22D

3expS 2
2uxu
l Ddx,

J8~X!52
b2

a11E F3~x2X!G~x2X!

3S 6a

a21
cosh2

x2X

d
2a24DexpS 2

2uxu
l Ddx.

~A9!
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