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Propagation of solitons in hydrogen-bonded chains with mass variation
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(Received 17 January 1997

In the context of the soliton mechanism for proton transport in hydrogen-bonded networks we analyze
properties of kink propagation through disordered hydrogen-bonded chain when realistic mass variation along
the chain is created through deuterium substitutions. We provide an interpretation for the kink propagation in
the chain as the motion of a particle with variable mass. We show that mass impurity localized modes are
excited only above a certain threshold of kink velocity and, as a result, the presence of mass impurities
renormalizes the maximal kink velocity in the medium. The existence of a critical kink velocity for the
excitation of impurity mode appears also in the study of the interaction of kink with a single impurity.
[S1063-651%97)02207-1

PACS numbdis): 42.65.Tg, 63.20.Ry, 63.20.Pw

[. INTRODUCTION disorder. The properties of soliton propagation in a long
mass-disordered segment are described in Sec. lll. In the

The basic idea in the soliton model of proton transportSec. IV we develop a collective coordinate approach which
along a hydrogen-bonded chafhiB) stems from the fact allows us to interpret the numerical results of Sec. Ill. Con-
that the proton in each H bond of the chain can be found ircluding remarks are in Sec. V.
two equilibrium positions separated by a potential barrier. As
a result, two degenerate HB ground states can be formed,;; tHE MASS-DISORDERED KINK-BEARING MODEL
viz. -+ X—H -+ - X—H ---X—H ---and--- H—X--.

H—X- -+ H—X. - - [1], while the transitions between these =~ The Hamiltonian for the complete chain can be written in
two states in the displacive limit result in topological solitonsthe form
[2—4]. When we consider only the ionic defect motion, the

on-site potential of the HB proton can be constructed as the 1/ pp,
sum of two pair of ion-proton potentials, e.g., the Morse H:E E(m_
potentials[5]. In the study of the more general problem of " "
ionic and orientational defects we can use appropriate doubl
periodic functions that are known to simulate well the effec-
tive proton potentia]6—9].

A progressively realistic study, in the context of soliton
models, of proton motion in HB chains, has to address th ) L ; :
effects in proton solitonkink) motion of the presence of arrer betwegn the minima of the °”'$'te pot_entlal,
impurities in the system. Even though there exists work orPn=MadUn/dt is thenth proton momentumg is the stiff-
the scattering properties of solitons, mainly from a singleN€SS constant of intersite proton-proton interaction, lasl
impurity [10—14, as well as rich literature on the nontopo- € lattice spacing of the chain. The bistatde multistablg
logical soliton propagation in disordered medigs—20,  function ~V(q) is  renormalized  according  to
there is no detailed knowledge regarding the more realisti¢/ (d1) =V(d2) =0 andV(0)=1, whereq, and q, are the
situation of proton kink propagation itong disordered Positions of the two minima around the origq=0. It is
chains. This situation, that arises in HB chains doped witfFOnvenient to use a dimensionless form of the Hamiltonian
deuteriumatoms, is currently addressed experimentg2ly]. (1) and the corresponding equations of motion; this is ac-
In order to analyze phenomena that are generated experime?\(?mpI'Sheﬂ2 by introducing the dimensionless time
tally in the context of isotopic substitution and to investigate™= (x/Mp) ' t, wherem, is the proton mass. Then the set
the proton-kink dynamics in the context of similarly pro- Of coupled equations of motion takes the form
duced disordered chains, we consider an HB chain with a
binary mass variation. The mass, at given siten takes the “nOn=0n+1—20n+0n-1—€V'(dn), n=0,£1,...

2

+ (g 1= Un) - eoV(Un D, (D)

%here u, is the displacement of thath proton from the
barrier top of the on-site potentiabV which is assumed to
have, at least, two degenerate minima, compatible with a
tandard kink-bearing modéB,4], ¢, is the height of the

valuesm, = m, or m, = 2m, depending on whether 2
that site is occupied by a proton with masg or a deuteron
of mass 2n,, respectively. where the lattice displacement figdg is given in units of the

The paper is organized as follows: In the Sec. Il welattice spacingd, i.e.,qn(7) =U,(7)/l. Hereu,=m,/m, de-
present the soliton-bearing model with the inclusion of masscribes the relative mass variation along the chain and
eo=eo/kl? is the dimensionless potential barrier height.
From here onwards the dot denotes the differentiation with
*Also at the Bogolyubov Institute for Theoretical Physics, respect to the dimensionless timeand the prime will stand
252 143 Kyiv, Ukraine. for spatial or other types of differentiation.
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In the continuum limit k=n), the lattice fieldq,(7) and
the mass distributionu,, are substituted byg(x,7) and
um(X), respectively. The dimensionless Lagrangianunits
of k1?) has the form

/3=de

The corresponding equations of moti(®) take the form of
the partial-differential equation

1 2 1 2
SR SG-eV(@|.

m(X)d7— Axxt €V’ (q) =0, (4)

which admits the standing solitotkink and antikink solu-
tion q=qx(x) given by the equations

K d
QL0 =+ \ZeV[a00]  or x=-+ foq %Vm
0
)

where the uppeflower) sign corresponds to a kintanti-
kink). As follows from these equations, thetandingkink
profile gk (x) does not depend on the mass variatiofx).

1089

(10

d2
E0=M0=f F2(x)dx= Jq V2€,V(q)dq

is the rest soliton energy which in the dimensionless units is
the same as the rest effective madg. Here the function

F has a bell-shaped form; it is defined through a soliton
solution by

F(x)=]ak(x)].

For simplicity of notations, we assume throughout this
paper that the on-site potentM(q) is a symmetric function.
Therefore,qx’ (—X)=dx’ (X). The form of the Lagrangian
(8) allows us to interpret the motion of a topological soliton
(kink or antikink in a mass-disordered kink-bearing chain as
the motion of aneffective particle with varying mas3he
total energy of the effective particle, whom its dynamics is
described by the Lagrangi&8), is an integral of motion, i.e.,

11

E=Eq+ iM(7)X%=const, (12

where the varying madgs! (7) is given by Eq.(9).
Next, we assume that the disordered chain segment is

In the particular case where there is no mass variationempedded in a regular chain with= m, and consider an

i.e., u(x)=1, the time-dependent E¢4) has the “relativis-

incoming kink with an initial velocitys,=v;/cy from the

tica”y” covariant form and, therefore, the Stationary soliton regular part of the chain. Then its initial energy in the non-

profile for the moving kink(and antikink with the dimen-
sionless speed=uv/cy, wherecy=y«/m, | is the charac-

relativistic limit is M(s?/2 and, as a result, from E¢L2) we
find the time dependence of the velocity

teristic velocity of proton sound, can be constructed from the

static profileqy(x) by the substitution of the argumexitby

£=(x—s7)//1—52. In the general case with mass variation,
we assume theamedependence of the soliton profile on the

position of its centeX = X(7) and the velocityX=X(7), i.e.,
we substitutesT— X(7) ands— X(7), so that

X—X(7)
ak(X, 7)) =0x(é€), &=&(x,7)= TZ()
- T

may be considered as an approximégee, e.g., Refl22])
soliton solution of Eq.(4) given in terms of the collective
coordinateX(7).

(6)

lll. KINK PROPAGATION IN A MASS-DISORDERED
SEGMENT

Using the ansatz given by Eq%), for sufficiently small
soliton velocities §2<1) we can approximately write
qx:q{((x_x)-

(7

Substituting Eqs(7) into the Lagrangian3), we find for
small velocities

a=ax(x—X), g,=—Xqr(x—X),

L£=L(X,X)=iMX?~E,, (8)

where
M =M (X(7)= f F—X(Muodx  (9)

is the effective soliton mass and

12

S;,

X“):(MOMM(T))

5M(T):f F2(x—X(7))8u(x)dx, (13
where we have represented the mass distribygir as the
sum w(xX)=1+ Su(x) with the continuum mass variation
ou(x). The sign of the kink acceleration at each instant of
time 7 depends on the sign @M (7) at this moment. Here
6M(7) can be considered as an increase or decrease of the
effective rest masM,. In the particular case when deuteri-
ums are present in the chain, we have a positive stochasti-
cally varying(in time) kink mass. A kink entering the disor-
dered segment with a small initial velocity and while
propagating in it experiences a random reduction of its ve-
locity. The equation of motiofil3) predicts that upon exiting

the segment, the final kink velocity; is the same as the
initial velocity s;. In order to test this prediction, we per-
formed extensive numerical simulations in the particular case
of the double-Morse potenti@b]

2

a—coshbq) (14

V@=|—{,=7

where the parametet=coshpq,) determines the potential
minimaq=*qg (g1= —0do andg,=(y). The explicit stand-
ing soliton solution is given by

12

k[ 15
tan2—_m tand, (15

with the soliton width
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1/2
>1. (16)

(a)

~ 1( 2(a—1)
B B 60(&"‘ 1)

The upper(lower) sign in Eq.(15) corresponds to the kink 0.08 WW
(antikink) solution. In the limiting case, when the parameter
b—0, the double-well potential14) becomes the well
known ¢* potential [2]: V(q)=(1—q?%/g3)2. The function
F(X) of Eq. (11) corresponding to the potentiél4) is

o

o

Fe
T

kink velocity

V2e€o(a+1) 0.03 - ——— disordered (L=100, pc=20%) 1

FO= 2152 cosR(XIa) @7

no impurities

The calculation of the rest soliton mass according to(EQ). 0.02

yields 0 1000 2000 3000 4000
time

(18

o
o
=

4 abqo
Mo=:m| ——=—1].
b d( V=1 )
For the numerical solution of the Eq&) we used the
fourth-order Runge-Kutta method; for accuracy we moni-
tored the total energy that was conserved to one part in
10~ 7. The simulations have shown that for sufficiently small
initial incoming velocitiess;’s, smaller than a certain critical
values.,, indeed, nampurity modegsee Sec. Y are ex-
cited resulting in the predicted behavior, vig.=s; [Fig.
1(a)]. Furthermore, random kink velocity fluctuations appear ——  disordered (L=200, pc=20%)
exactly as predicted by Eq13). As a result, the numerical e no impurities
simulations corroborate the picture furnished by B@) for
kink propagation in a long mass-disordered medium in the 024 200 400 600 800
velocity ranges;<sg, . time
The kink propagation picture in the fully disordered chain
changes drastically for incoming kink velocities larger than  F|G. 1. Kink propagation in ordered and disordered media. For
the critical velocitys, . In this regime, the impurity modes all the simulations we used for the on-site potential, that is given
are excited at the expense of the kink kinetic energy and, afgom Eqgs.(1) and (14), values of the parametets=7, g,=0.35
a result, there is now geductionin the exiting kink velocity  ande,=0.005. The sound velocity in the perfect chain is unig).
s¢ leading to the inequalitys;<s;. This situation is illus-  Kink propagation with small initial velocitg;=0.05 for an ordered
trated in Fig. 1b). To see if this picture appears also when (dotted ling and a disordere(tontinuous ling HB chain consisting
lighter impuritiesare present in the disordered segment, weof 100 units with deuterium substitution pc equal to 20%. We ob-
performed numerical simulations with |mpur|ty massesserve here, as well as in simulations with much Ionger chains, that
smaller tharm,, i.e., “attractive impurities.” We found that the kink exits. with the same veIpcity even though ‘its.velocity has
at large velocities kinks excite the impurities, loose energyPeen fluctuating while in the disordered chaib) Similarly for
and depart with a smaller velocity. At small injection veloci- large initial velocitys;=0.6 and disordered segment of 200 unit
ties, the exit kink velocity is again the same as the initialC€!IS- All quantities are dimensionless.
velocity; there is a similar yeteversedsmall velocity fluc-
tuating pattern compared to that in Figall, where the ve-
locity fluctuations are now above the kink injection velocity. and departure from it after some critical valsg . In Fig.
This is exactly the behavior predicted by E§3). In orderto  2(b) we investigate the dependence of the critical velocity
treat the large velocity cases in the context of the collectives.,, operationally defined as the point of departure from the
coordinate formalism, we must introduce additional func-equalitys,=s; in Fig. 2(a), as a function of disordered length
tions describing the amplitude of the impurity modes. Thesegment. We see that as the segment length increases, there
resulting dynamical system, even for the single impurityis a clear saturation to a segment length independent value,
case, is quite complicated and will be studied in the Sec. IVapproximately equal te.,~0.2 (in units of sound velocity
We carried out numerical simulations for the calculationAs a result of our finding that for incoming kink velocities
of the critical velocitys,, and its dependence from the length s;’s larger than some critical velocity,, kink energy losses
of disordered segment. In Fig(e2 we show the results of a commence, we expect that propagation in long disordered
kink injected in a disordered chain consisting of 1000 units/mesoscopic chains with many impurities will exhibit an ef-
by plotting the exiting kink velocity as a function of the fective maximal propagation velocity determined by; .
incoming velocity. We observe equality at small velocitiesWhen a kink moves initially faster than this maximal veloc-

bbb b

5=0.6 4

kink velocity

N
s
T
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FIG. 3. Velocity of a kink exiting a disordered segment with

04 | (b) | 20% mass impurity substitution as a function of length size. The
pc=20% exiting velocity approaches slowly the limiting valigg,~0.2 at

) large disordered segment sizes. The initial velocity is 0.6. The error

I bars are error estimates taken from statistics with the chain configu-

1 rations.
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T

E E K3 E E E IV. SINGLE-IMPURITY MODE AND ITS INTERACTION
, WITH A KINK: COLLECTIVE COORDINATE
APPROACH

critical velocity s,

When the density of deuterium atoms is low the average
distance between adjacent impurities is larger than the soli-
ton width. In this limit the scattering of a soliton by many
impurities can approximately be treated independently, ig-
0 300 500 900 1200 noring interference effects. Therefore, in order to understand

disordered length L the appearance of the soliton velocity threshold for values
higher than that for which the soliton transparency through a
mass-disordered segment is accompanied by energy losses,
we consider an isolated impurity localized at a single site

mass impurity substitution. The error bars are error estimates takeﬁ‘?'g" at the site witm=0). We represent the relative mass

from statistics with the chain configurations. We observe that theyf’matIon along the chain as the sum
equality between incoming and exiting kink velocities starts depart- —14 798 (19)
ing at some critical velocitys,, . (b) Critical velocity at which a Kn 7n,0:

measurable departure occurs from the equalitys; as a function
of disordered segment size. The deuterium content is at 20%.

14
-
T
1

0.0

FIG. 2. (a) Exiting kink velocity as a function of incoming ve-
locity for a disordered segment of 1000 units consisting of 20%

where 7 is the difference of the impurity mass ad, , is
the Kronecker symbol.
The impurity mode is the standing linear localized wave

ity, it excites impurity modes and by loosing energy, reduces 0n(7) =Aoexp( —[n[/\)cog O 7) (20

its velocity until the maximal allowed velocity is reached; with an arbitrary amplitudé,. The two dimensionless quan-
the latter is independent of the length of the disordered SeGities: correlation length. a(;l.d frequency can be found
ment for very large lengths. In order to confirm this idea weg, jicitiy [11] by substituting the ansat20) into the set of
performed additional numerical calculations for quite longiha |inearized equation®). Note that the similar procedure

disordered segments, shown in Fig. 3. Here, we injected g5 pe accomplished in the continuum lirfi2—14. The
kink at a fixed initial velocitys; much larger thars,,, and  (egylt is

register the exit velocity; for disordered segments of vari-

ous lengths. We observe that the exit velocity drops very 1 2 2

quickly as the segment size increases and subsequently ap- cosh-=1+(Qp— 02972, (22)
proaches very slowly the asymptotic vakg~0.2. We note

also that Scr increases as the impurity concentration dewvhereQ,=+e,V"(*qg) is the dimensionless frequency of
creases. small-amplitude oscillations at each of the miniopa £qg
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and the impurity mode frequendy, depending on the im- impurity, are presented in Figs. 4 and 5. It follows from these

purity massz, is given explicitly by(for »>0) figures that the results of the CCA are in good correspon-
dence with the direct simulation results. Thus, both pictures
, Q52 Q5+ 457 +4 (direct and collective coordinatéllustrate that no impurity
0= 1— 7 . (22 modes are excited and, as a ressfts s; if initial velocities

are sufficiently small. It was fascinating to observe that dur-

When 7—0 (the “amplitude” impurity vanishes then Ing the kink passage in the vicinity of the impurity, the os-
Q—Q, and\—, i.e., the impurity mode is delocalized. plllator _c.oo'rdlnate(t'he d|splacgment of the deuterium from
We can study the interaction of a moving kifdr anti- its equilibrium pos_|t|0|_)| A_(r) dlsplac_es forwgrd and back-

kink) with the impurity mode in the continuum limit wards accomplishing in time approximately just one oscilla-

(n=x) by using the collective coordinate approach. Accord-tion period, as shown in Fig. 5. The amplitude of this one-

ing to Eq. (20), we assume a general solution to be in thePeriod oscillation increases with the growth of initial
form of the Iinéar superposition velocity. For higher incoming velocities nonvanishifig-

sidua) impurity oscillations appear. The amplitude of these
q(x, 7) =g (x—X(7)) = A(7)exp(—|x|/\) (23 oscillations is much smaller than the displacement pulse
(one-period oscillation appearing and existing during the
where the uppeflower) sign coincides with that of the kink kink-impurity interaction. As the initial velocitg; increases
(antikink) solution given implicitly by Eqs(5) and(6) [see, the amplitude of the residual oscillations becomes larger. Af-
also, Eq.(15)]. The functionA=A(r) describes the small- ter the kink-impurity interaction terminates, the oscillation
amplitude background for the kintantikink). Note that in ~ amplitude is stabilized to some constant value. In other
the case of absence of the interaction with the kink, we havevords, above the critical velocity, there is some energy loss
A(7)=Aycos)7) [see Eq.(20)]. Both the variablesX(r) of the incoming soliton resulting in decreasing its velocity.
and A(7) are to be determined whereas the parametés  Therefore, the residual oscillations can be referred to as the
defined according to Eq$21) and (22). impurity mode. Since these results, at least at the qualitative
After a series of calculations presented in the Appendixevel, coincide with those of the direct simulations of Egs.
we arrive at the equations of motion for both the generalized2), one can conclude that the collective coordinate approxi-

coordinatesX(7) andA(7) mation adequately describes the scattering picture of a soli-
. . } ton by a mass impurity.
[Mo+ 7F2(X)]1X— 7F3(X)G(X)X2—[1(X)+ 5F (X)]A In Fig. 6 we plot the energy of the impurity mode, a long

time after the passage of the kink from the impurity site, as a
function of the initial kink velocity. For the case of the direct
simulation of the equations of motiof2) we calculate the

+J'(X)A?/2=0,

(A7) (A+Q2A) —[1(X) + nF(X)]X impurity mode energy using Hamiltonid), where the sum
) extends to a segment ohXsites to the left to R sites to the
—[1"(X)— pF2(X)G(X)]X?+ I(X)A=0, right of the impurity sitg see Fig. €a)]. For the case of CCA

(24  we plot the energy of oscillator given by the expression

(N + 7) (A%2+Q2A?)/2 [see Fig. &)]. These figures demon-
strate a behavior similar of that depicted in Figa)2i.e., for
small initial kink velocities we haves;=s; and for larger
ones we haves;<s;. However, in the CCA schemfgFig.
6(b)] we see that some form of “modulation” takes place;
there are two abrupt drops beginning at=0.4 and
gi:O.G, that are not expected and, more importantly, not
confirmed by the direct simulation picture given in Figa)6
This discrepancy can be explained by the fact that we have
adopted the particle-oscillator approximation, assuming Egs.
(7) valid only for sufficiently small velocities. The resulting
particle-oscillator system described by the equations of mo-
tion (24) appears to be a crude approximation to the many-
oscillator system governed by Eq®). A simplified system
of equations, such as Eg&4), with only two degrees of
freedom has some nonlinear resonance properties which are
rc?xhibited by the modulated behavior. In order to improve
this approximation the collective coordinate scheme applied
in this paper would have to be developed in a more precise
i ; - " _way by taking into account the relativistic behavior, and

gﬁ‘lging rg::,?trhmt(ﬁ: ?ZZOSQEC%(;TG initial conditiohznd os instead .of Eqs(__?) taking exact derivatives af=qx(¢), viz.

The results of integration of the effective equatidgd)  d,=—¥YX(1—¥X&)dw(§), ax=rak(¢) whereé=yx—X)
in the framework of the collective coordinate approximationand y=(1—X?) ~Y2. However, the resulting effective equa-
(CCA) and their comparison with those of the direct simula-tions of motion become very complicated and their analysis
tions of the basic equations of moti¢?) with one deuterium is much more difficult.

where the functiorG is defined byG(x)=—F'(x)/F?(x)
while the functiond andJ and the derivativet’ andJ’ are
given in the Appendix.

The set of Eqs(24) describes the interaction of the effec-
tive particle, the position of which is given by the coordinate
X(7), with the oscillatorA(7) situated at the origirx=0.
This interaction is completely determined by the shape of th
potential functionF(X), i.e., by the profile of the soliton
solutiongg(x) [see Eq.(11)]. The other functiorG(x) and
the convolutionsl (X) and J(X) are given in terms of the
potential F(x). In the limiting casen—0 (21—, and
A—o), whenl(X)—1y= const and](X)—Jy= const, the
equations of motior{24) are reduced to

MoX—1oA=0, A+Q3A=0. (25)

These equations describe the interaction of the soliton wit
the infinitely extended harmonic wave of the frequeiy.
Their integration yields the soliton motion consisting of two
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FIG. 4. Propagating kink velocitordinate as a function of timdabscisspfor kinks with different initial velocitiess; . When the kink
interacts with a deuterium impurity its velocity drops. The thick lines show the results of the collective coordinate approximation while thin
lines show the direct simulations of the equations of moti@n

V. SUMMARY impurity modesat small velocities and their appearance at a
. . .. __certain critical incoming velocity are clearly depicted in Fig.
_We have ex.a.mmeq t_he propagation of proton sohtonsz(a) where we plot the kink velocity after exiting the disor-
(kinks and antikinks in isotopically random chains and qereq segment as a function of the incoming velocity in the
found that, contrary to intuition, impurity modes are not ex-100g sjte long disordered segment. This also appears in the
cited for low (compared tos;) incoming velocity of the scattering of a kink by a single impurity, where the impurity
soliton (at least such an excitation was not detected withinmode is not excited for sufficiently small initial kink veloci-
the accuracy of our numerical simulatjorin contrast, at ties. The existence of an upper critical propagation soliton
relatively high velocities the soliton loses part of its energyvelocity s,, in the mass-disordered medium that is lower
and slows down. Since in the absence of mass variation thgan the speed of sound in the perfect lattice signifies that the
soliton propagates perfectly at these velocities, we concludeffective proton motion is much slower when deuterium im-
that its loss of energy is directly attributed to the excitationpurities are present in an HB chain. This phenomenon of the
of the impurity modes in a mass-disordered segment of theffective renormalization of the maximal propagation kink
chain. Since the same exit velocity reduction is not observedelocity in the presence of disorder could be used experi-
at low velocities, it is evident that the impurity modes are notmentally for the assessment of the nonlinear aspects of the
excited then. These effects of tabsence of excitation of the proton dynamics.
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FIG. 5. Deuterium impurity displacement from the minimum of the on-site potential as a function of time, for different initial kink

velocitiess; .

The deviation from the zero value is a result of the passage of the kink through the impurity. The thick lines show the results

of the collective coordinate approximation while the thin lines show the direct simulations of the equations of (@otion

Stimulating and useful discussions with Professor G.
Careri on experimental aspects of HB systems are gratefully

ACKNOWLEDGMENTS

L(X,X;AA)=3(Mg+ nF2)X2—(1+ 7F)XA

+3I(N+ ) (A2— Q%A% - LJA%, (AL)

acknowledged. We thank M. Xilouris, S. Komineas, and N.
Lathiotakis for computational assistance. The work was supwhere
ported from INTAS Grant No. 94-3754, HCM Grant No.

ERB-CHRX-CT93-0331 of the European Community and
IIENEA Grant No. 95 RAA 115 of the General Secretariat for

Research and Technology of Greece.

Upon substitution of the ansat23) as well as the con-

APPENDIX

I(X)=f F(x—X)exp(—|x|/\)dx, (A2)

J(X)= f {eoV"Tak(x—X)]— Q3}exp( —2|x|/\)dx.
(A3)

tinuum form of Eq.(19), viz. u(x)=1+ n8(x), where

d(x) is the Diracé function, into the Lagrangiaf3) and
using Eqs(7), (9—(11), andF(—x)=F(x), in the nonrela-
tivistic limit we find the effective Lagrangiafup to a con-

stanj

In the calculations of the Lagrangia®l), we have ex-
panded the functioW(q) in the vicinity of the soliton solu-
tion gx(x—X) up to the second order and then we used the
relation (\+ 7)Q2=\"1+1QZ which follows from Egs.
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0.12 . ; ; | very large(compared to deuteriumand the initial kink ve-
locity larger than a threshold value, the kink reflection takes
place[23].
E From the LagrangiafAl) result the equations of motion
(24) for the generalized coordinate€ ) andA(7), that de-
scribe the system in the framework of the collective coordi-
nate approximation. Using the expressio®(x)=
—F'(x)/F?(x) we have

(a)

0.08 - 1

|'(X)=f F2(x—X)G(x—X)exp(— |x|/\)dx, (A5)

0.04 -

J(X)= f {F(x=X)[2F (x—X)G?(x—X)

energy of impurity mode (arbitrary units)

o * -G’ (x—X)]—-Q3lexp(—2|x|/\)dx,  (AB)

o—0— 00— -0 1 I
@ @

02 03 0.4 0.5 06
initial kink velocity

0.00
0.

@

o
<,
oS

J'(X)= f F(x—X)[4F2(x—X)G3(x— X) — 5F (x— X)

XG(X—=X)G'(Xx=X)+G"(x—X)]

0012 | (b) . ’ xexp(— 2|x|/\)dx. (A7)

The system of coupled equatiof) can be transformed

. in a form convenient for numerical integration and solve
them wusing the boundary conditions{(— )= —oo,
X(—»)=s;, A(—®)=0, A(—=)=0 . We choose the po-
tential of Eq.(14) for our numerical simulations; as a result
the functionF (X) is given by Eq.(17), while the G(X) is

0.008 - b

energy of oscillator (arbitrary units)

b .
. G(X)= \/ﬁsmf’(ZX/d). (A8)

. The calculation of the frequency of small-amplitude oscilla-

0.000 . . oo 0000000 0 | I

0.0 0.1 02 03 04 05 06 tions yieldsQ = VegV"(=qg)=2/d . For the numerical so-
initiaf kink velocity lution of the Eqs(24), besides Eqg16), (17), (18), (A2) and

(A5), we used the following specific form for the expressions
FIG. 6. Energy of the impurity mode long time after the passaggA6) and (A7), viz:

of the kink from the impurity site as a function of the initial kink

velocity. In (a) we present results from the direct simulation of the 2 a x—X
equations of motior{2) and in(b) results in the framework of the J(X)=— J F2(x—X) cosf—— +a—2
) - T a+1 a—1 d
collective coordinate approximation.
2|x|
(21) and(22). In the limit A(7)— 0 the effective Lagrangian xex;{ TN dx,
(A1) is reduced to the form@8), so that Eq.(13) can be
rewritten as b2
J'(X)=— fF%x—X)G(x—X)
X= > (A4) art
== :
+ 1+ (9/Mg)F?(X) 6 HX_X \ 2/ |
if we substitute thereSu(x)= 78(x). We have inserted the M| GgogeosT—g— —ama)exp — ) ox
sign “=" in Eq. (A4) because when the mass impuriyis (A9)
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